Understanding vascular patterns in leukaemia with geometry and topology

HeKa seminar PSC, Monday 18 September

Anna Song

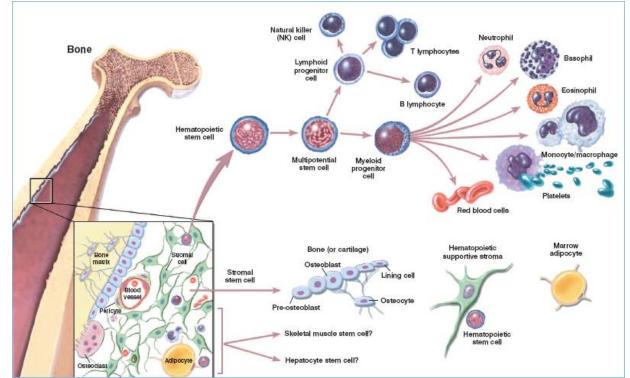
PhD: 2019-2023 (4 years) Defense: 22 September 2023 Imperial College London (maths, Anthea Monod) The Francis Crick Institute (biology, Dominique Bonnet)

Introduction

Acute Myeloid Leukaemia

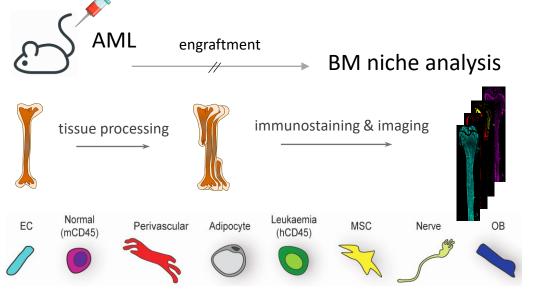
AML arises after accumulation of mutations in HSCs. Tissues get infiltrated by proliferative and dysfunctional haematopoietic cells.

- high clonal heterogeneity
- AML affects the bone marrow environment for its own proliferation
- drug resistance, relapse after therapy
- global picture of how AML interacts with bone marrow niches?
- vascular morphology and AML?



Credits : Terese Winslow & Lydia Kibiuk (2001)

Quantify shape textures to understand diseases

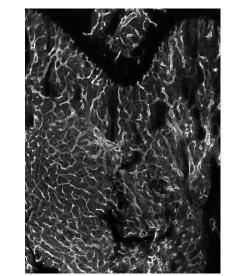


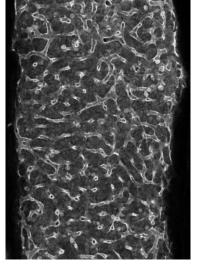
27 entire femurs

- 4 CTRL (0%)
- 4 MNC (53%-86%) -
- 7 U937 (1%-10%) -
- 3 HL60 (23%-25%) -
- 6 P1 (10%-76%) -
- 3 P2 (59%-90%) -

data: Antoniana Batsivari

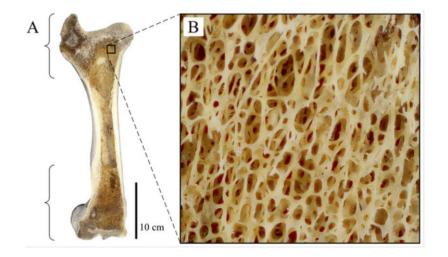
vessels



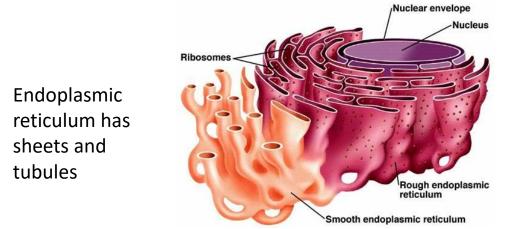


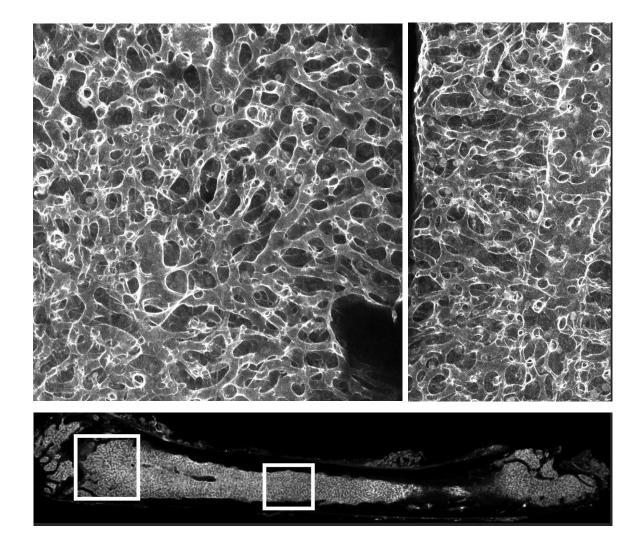
after engraftment

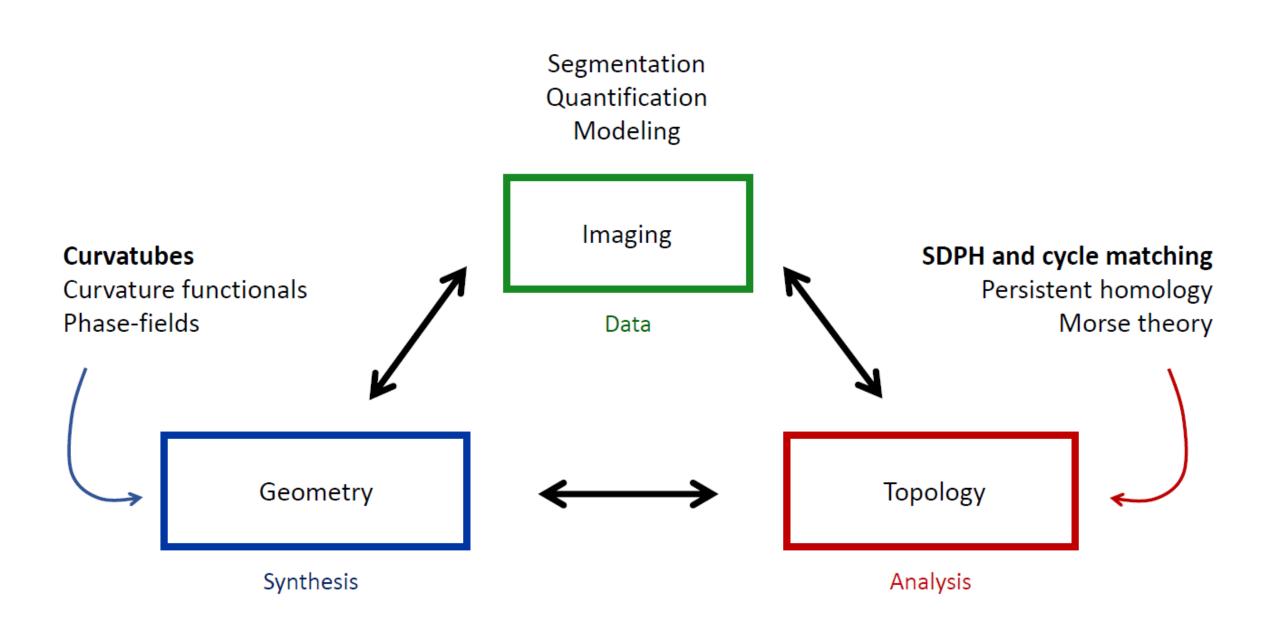
Tubular shapes, branching membranes



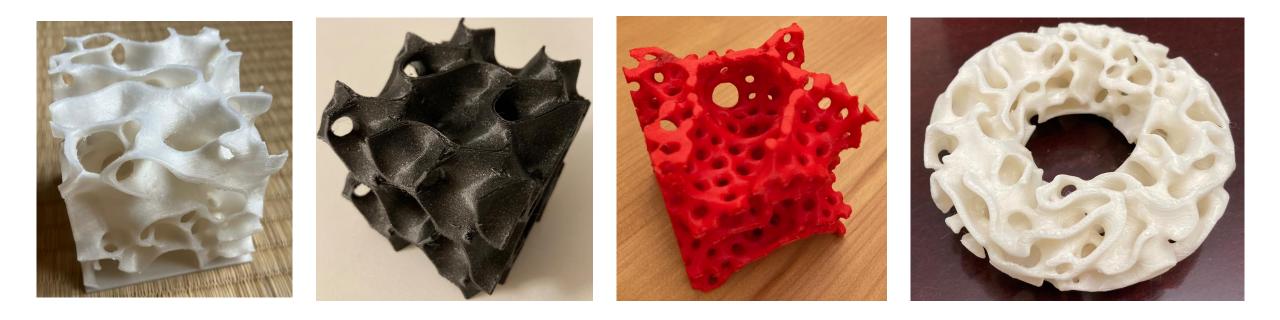
Trabecular bone has plates and rods, from Bishop et al., PeerJ (2018)







I. Curvatubes



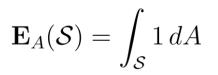
Generation of Tubular and Membranous Shape Textures with Curvature Functionals, Anna Song, *J Math Imaging Vis* (2021)

Energy-minimizing surfaces

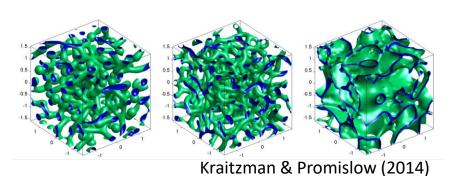
 $\mathbf{E}_{\mathrm{W}}(\mathcal{S}) = \int_{\mathcal{S}} H^2 \, dA$

Willmore (1960')

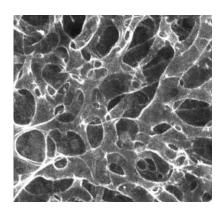
Geekiyanage, Balanant, Sauret, et al. (2019)



area



FCH model (2012) not curvature-based

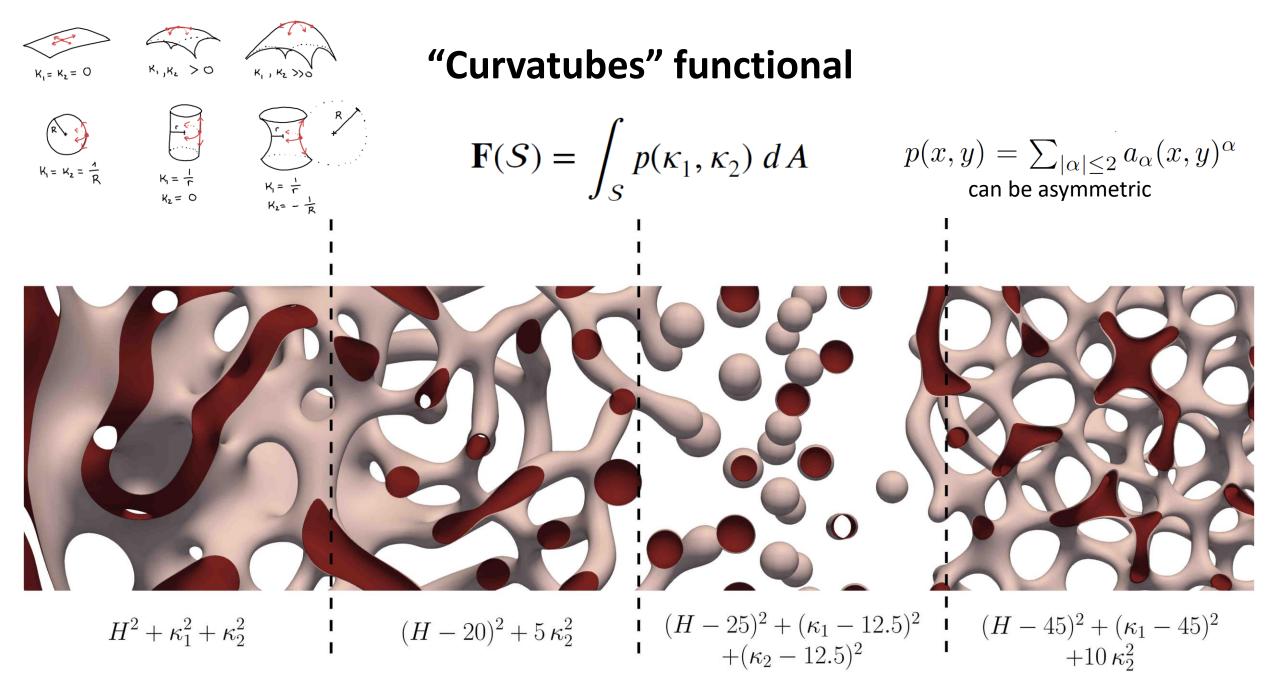


 $\mathbf{E}_{\mathrm{H}}(\mathcal{S}) = \int_{\mathcal{S}} \left(\frac{\chi_b}{2} (H - H_0)^2 + \chi_G K \right) \, dA$

Helfrich (1970') and beyond

General 3D shapes?

Branching, tubular, membranous, porous, spherical... Bone marrow vessels?



Main contributions

$$E_{A}(S) = \int_{S} 1 \, dA$$

minimal surfaces (1750')
$$E_{W}(S) = \int_{S} H^{2} \, dA$$

Willmore (1960')
$$E_{H}(S) = \int_{S} \left(\frac{\chi_{b}}{2}(H - H_{0})^{2} + \chi_{G}K\right) \, dA$$

Helfrich (1970')

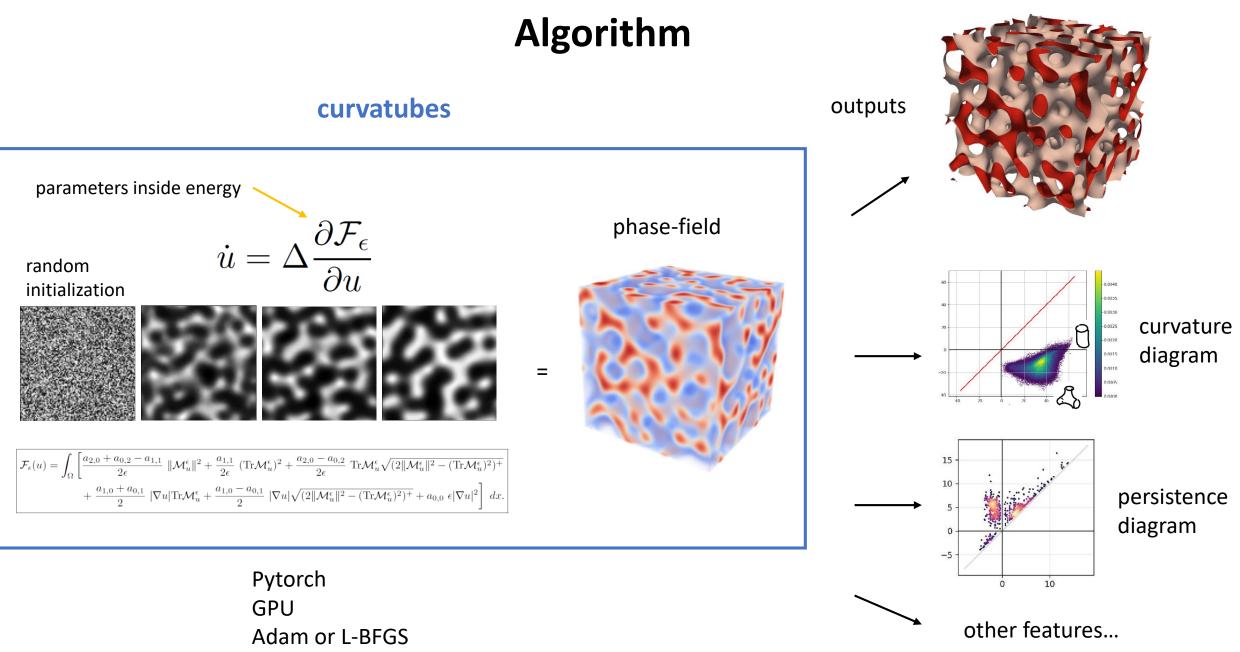
$$\mathbf{F}(S) = \int_{S} p(\kappa_1, \kappa_2) \, dA$$

Curvatubes (2021)

$$\mathbf{F}(S) = \int_{S} p(\kappa_{1}, \kappa_{2}) dA$$
2D surface energy
hard to simulate
$$\int_{V} \mathbf{F}(S) = \int_{S} p(\kappa_{1,u}^{\epsilon}, \kappa_{2,u}^{\epsilon}) \epsilon |\nabla u|^{2} dx$$
Eesy to simulate on GPUs

https://github.com/annasongmaths/curvatubes

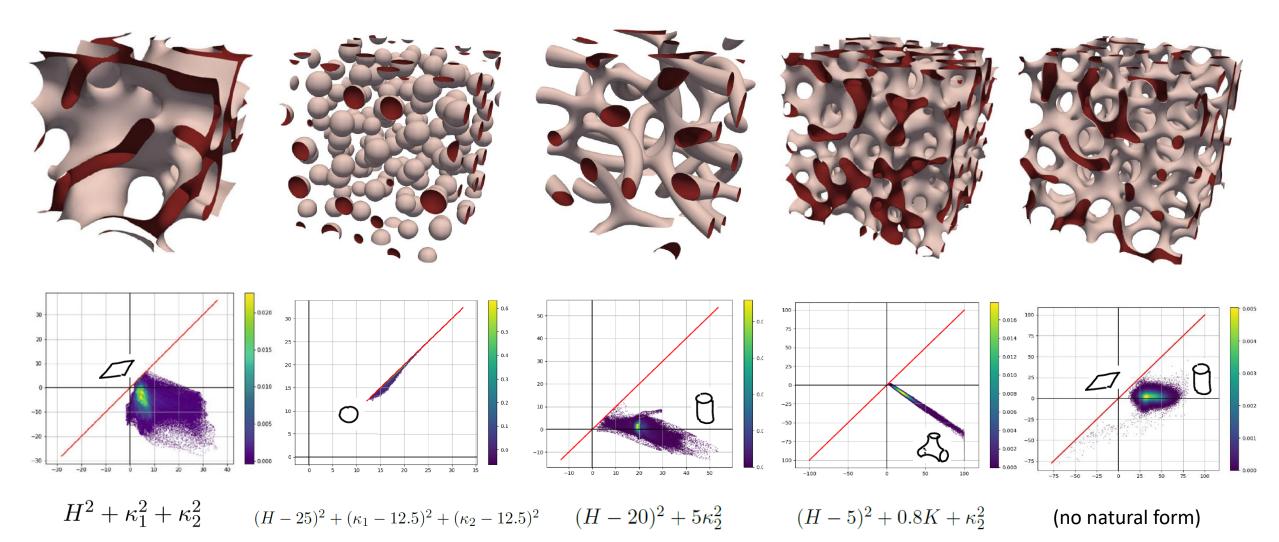
surface



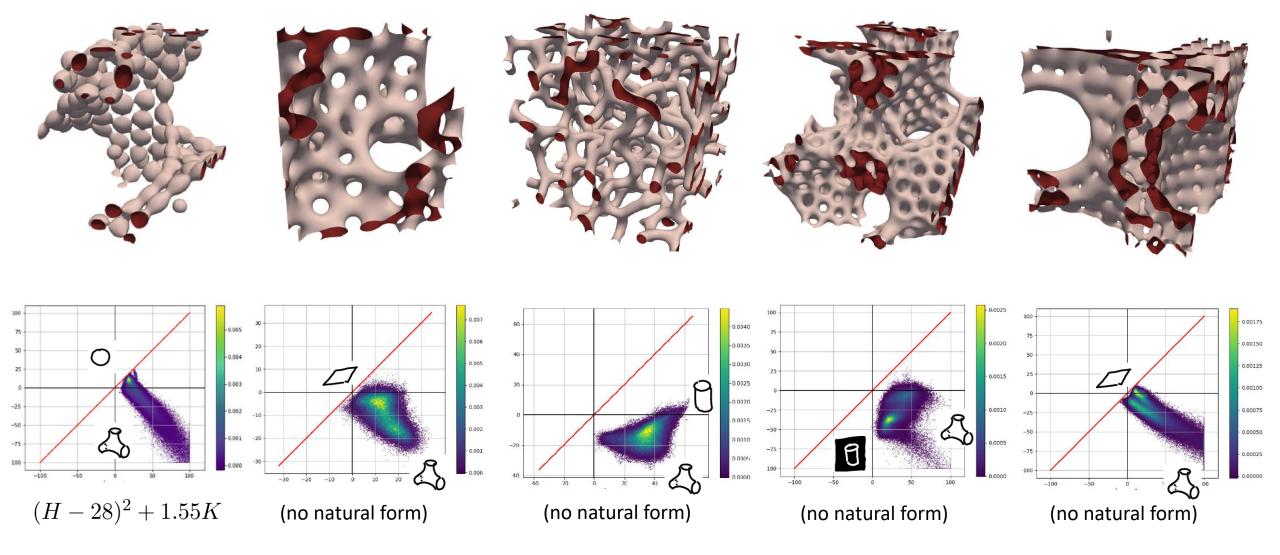
Basic shape textures

Natural form

 $h_2(H - H_0)^2 + k_1K + \alpha(\kappa_1 - \kappa_1^0)^2 + \beta(\kappa_2 - \kappa_2^0)^2$



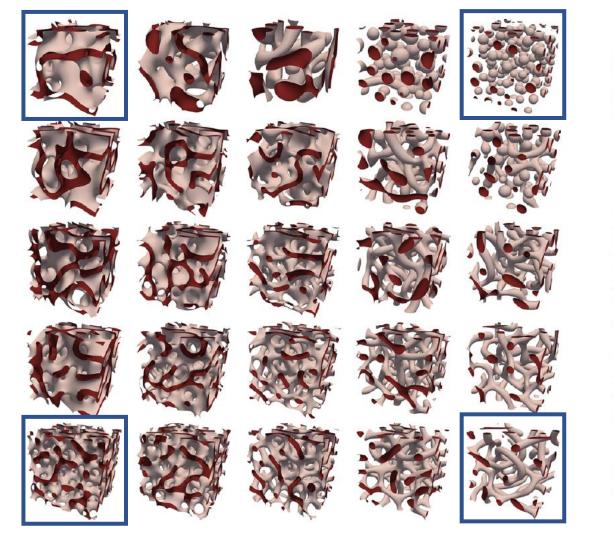
Complex shape textures

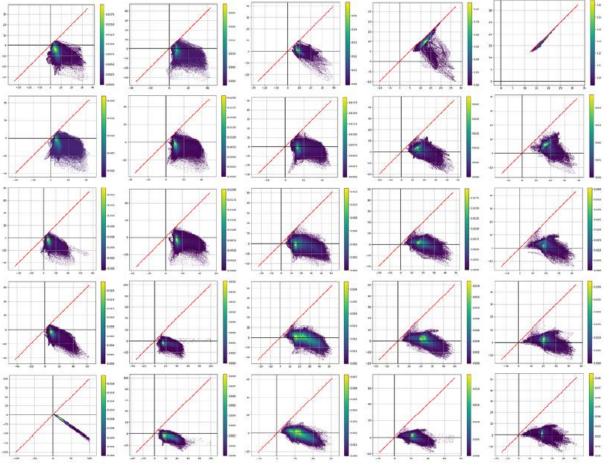


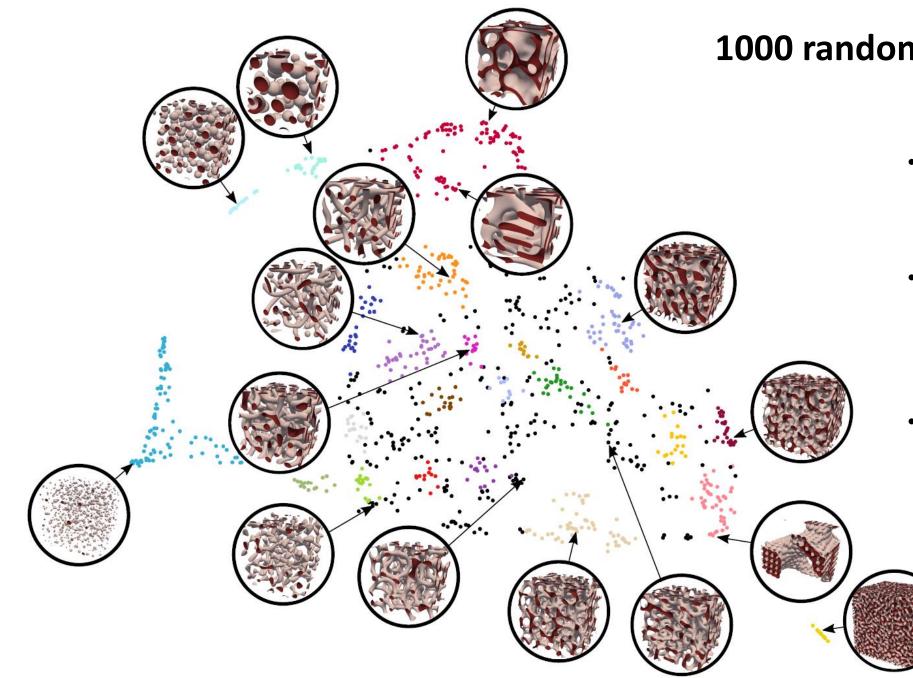
Continuity of shapes and of textures

same initialization different energies

bilinear interpolation between 4 shape parameters leads to continuum of morphologies



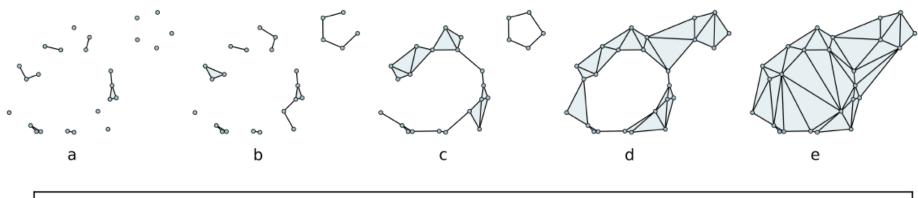


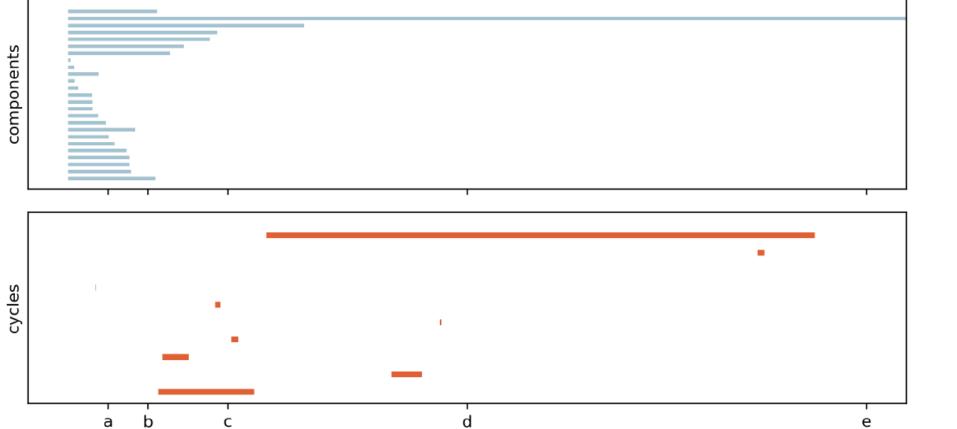


1000 random shapes in UMAP

- randomly chosen coeffs, then accept only "valid" shapes
- compute pairwise
 Wasserstein distances
 between curvature
 diagrams
- embed in 2D using UMAP

II. Topological Data Analysis (TDA) for vascular quantification





Persistent homology :

- tracks evolution of topological features
- summarizes birth-death times in barcodes

PH0: components

PH1:

cycles

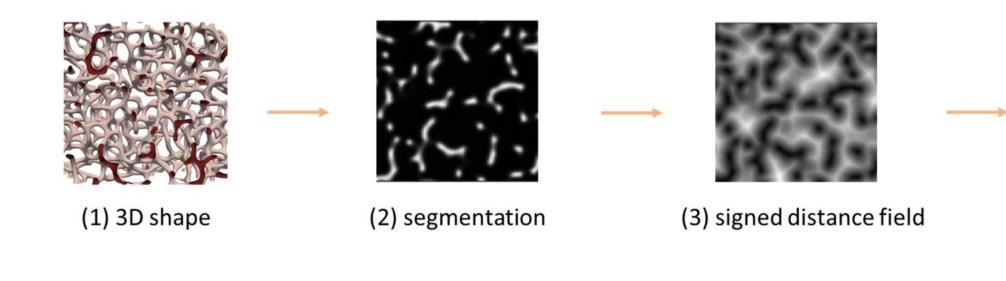
PH2:

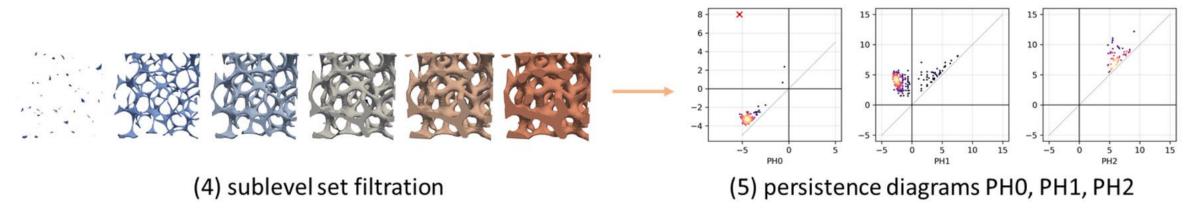
PHk:

cavities

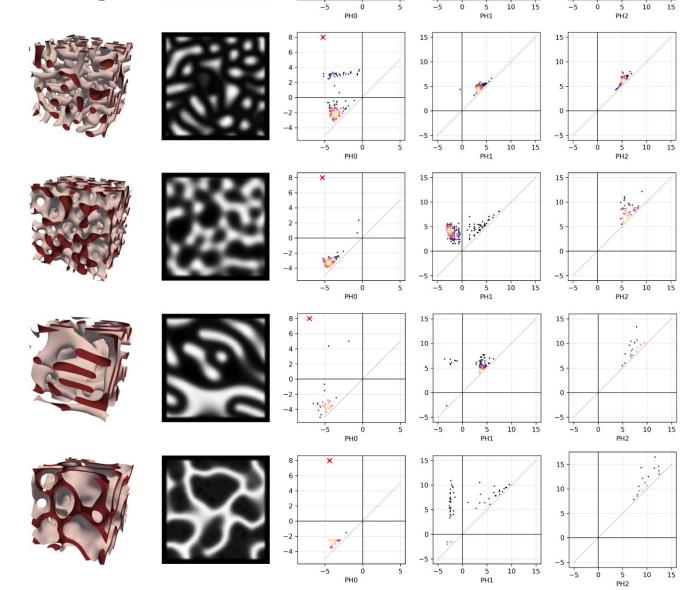
k-dim holes

SDPH method





- five textures generated with curvatubes
- sometimes visually hard to describe how different
- but SDPH can easily discriminate



* :

12

10 -

5

Ó

Theoretical investigation

Generalized Morse Theory of Distance Functions to Surfaces for Persistent Homology Anna Song, Ka Man Yim, and Anthea Monod (arxiv, 2023)

Setting

SDPH used by (Delgado-Friedrichs *et al.*, 2014, 2015; Herring *et al.*, 2019; Moon *et al.*, 2019; Pritchard *et al.*, 2023) in the discrete cubical setting. Here, we consider distance fields to smooth surfaces.

Let Ω^- be a bounded open set with C^k boundary $S = \partial \Omega^-$, $k \ge 2$. Then

 $\mathbb{R}^n = \Omega^- \sqcup \mathcal{S} \sqcup \Omega^+.$

Define
$$d = \operatorname{dist}(\cdot, \Omega^{-}) - \operatorname{dist}(\cdot, \Omega^{+}).$$

Consider the sublevel set filtration X_{\bullet} where

$$X_t = \{x \in \mathbb{R}^3 \mid d(x) \leq t\}.$$

Compute the persistence diagrams

 $\operatorname{PH}(d): \forall s \leq t, \quad H(X_s) \to H(X_t).$

General aims

Are SDPH diagrams well-defined?

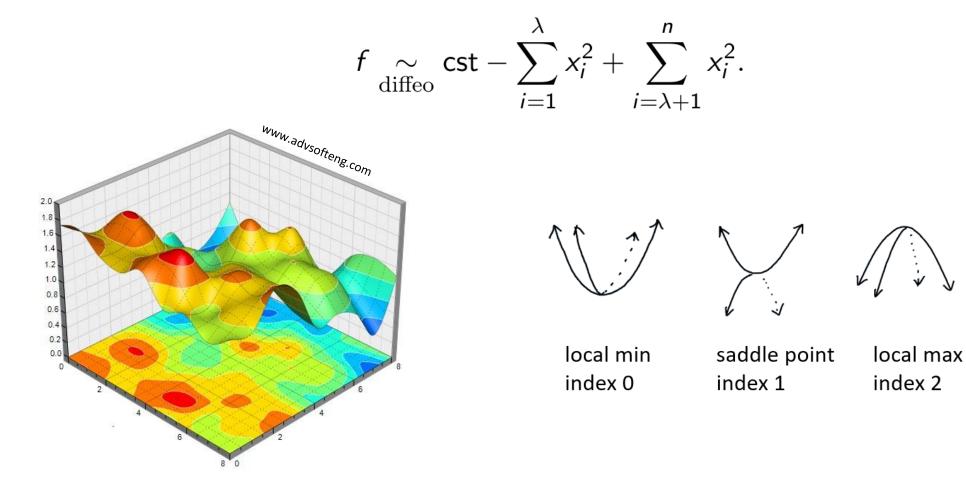
How to **interpret** SDPH diagrams?

What do they **quantify** in shapes?

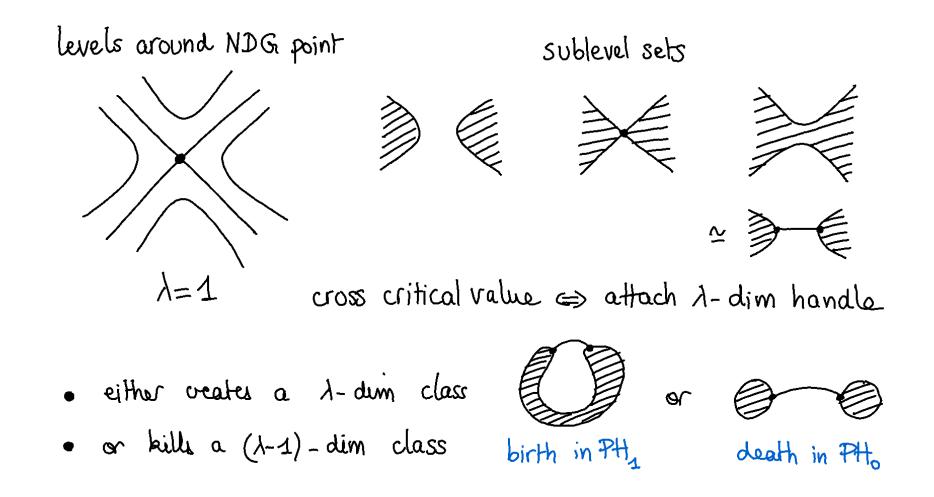
notion of critical points

Smooth Morse theory and PH

Morse theory studies non-degenerate critical points of smooth functions, at which

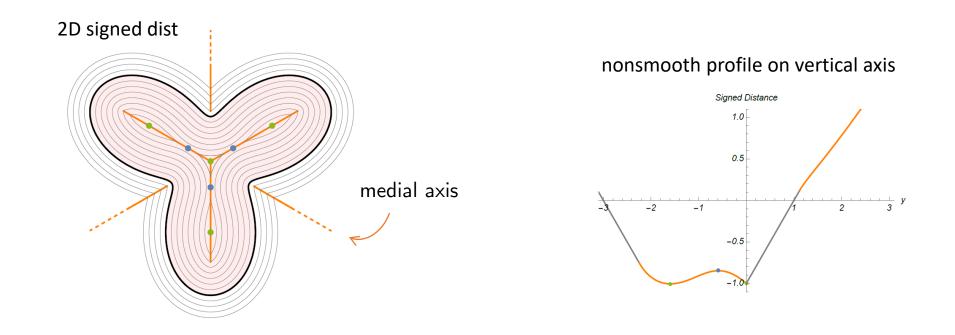


Morse theory relates a smooth proper Morse function f to PH(f) through the **isotopy** lemma and handle attachment lemma. Typically, births and deaths in $PH_k(f)$ pair critical points with indices (k, k + 1).



Problem

However, distance functions generated by smooth boundaries S are not smooth, especially on the medial axis \mathcal{M}_S .



Contribution: Morse theory for (signed) distance functions

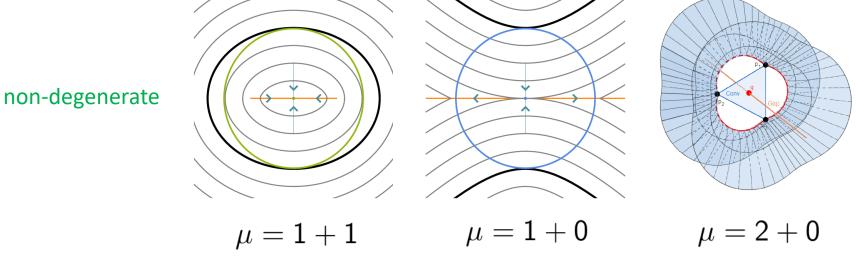
Theorem (Isotopy lemma for signed distance)

Let a < b in \mathbb{R} . Suppose that $d^{-1}[a, b]$ contains no critical point of d (it is compact). Then $d^{-1}(-\infty, a]$ is a deformation retract of $d^{-1}(-\infty, b]$, and therefore they are homotopy-equivalent.

Theorem (Handle attachment lemma for signed distance)

At a Min-type NDG critical point $x \in \mathbb{R}^n \setminus S$ with index λ and value d(x) = c, if the interlevel set $d^{-1}[c - \epsilon, c + \epsilon]$ contains no other critical point for some $\epsilon > 0$, then

$$d^{-1}(-\infty, c+\epsilon] \simeq d^{-1}(-\infty, c-\epsilon] \cup e^{\lambda}.$$



Theorem (Genericity)

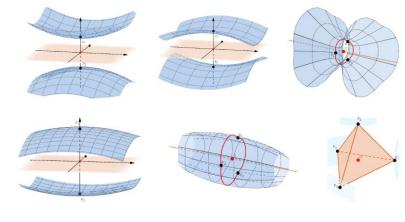
For generic embeddings of a C^k -smooth ($k \ge 3$) closed orientable surface into \mathbb{R}^3 , the induced signed distance d admits only a finite number of critical points, that are all non-degenerate.

Corollary (SDPH)

For generic 3D shapes, the SDPH module PH_k can be decomposed into a finite sum of $\{[b_i, d_i)\}$ intervals pairing NDG points with indices (k, k+1).

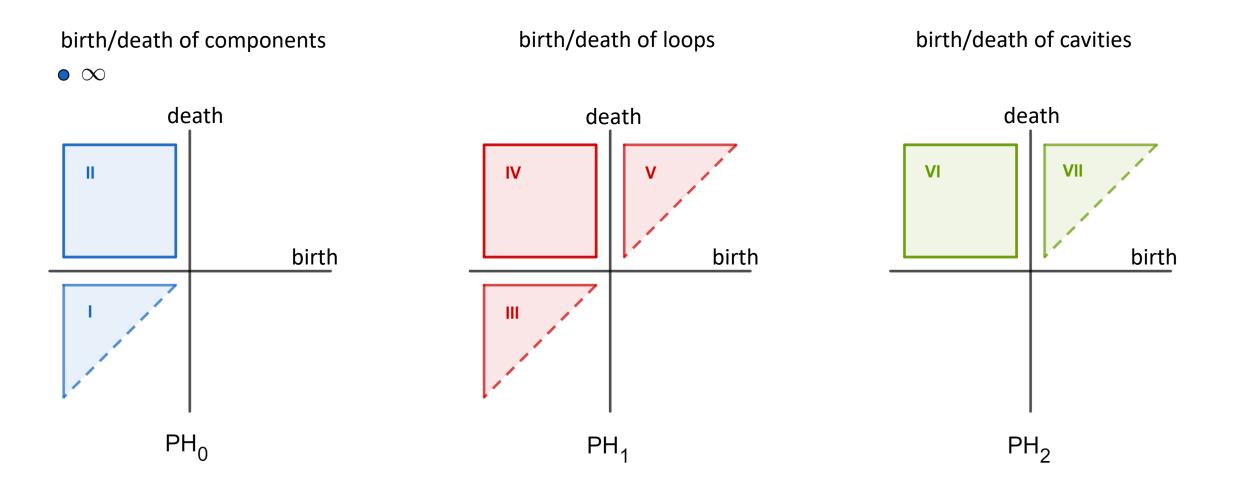
	$\lambda = 0$	$\lambda = 1$	$\lambda = 2$	$\lambda = 3$
<i>d</i> < 0	type 0 ⁻	type 1^-	type 2 ⁻	
	3 subtypes	2 subtypes	1 subtype	
<i>d</i> > 0	/	type 1 ⁺	type 2 ⁺	type 3 ⁺
		1 subtype	2 subtypes	3 subtypes

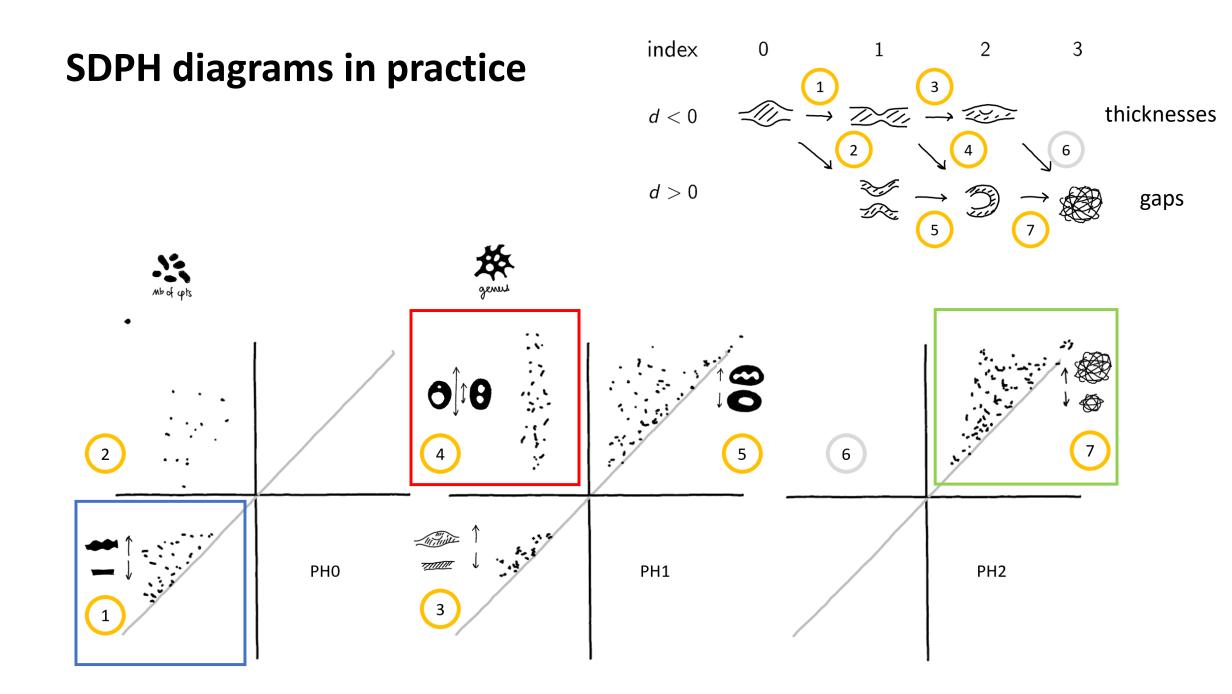
Table: Classification of NDG critical points of d in dimension 3.



(subtypes)

SDPH diagrams in theory



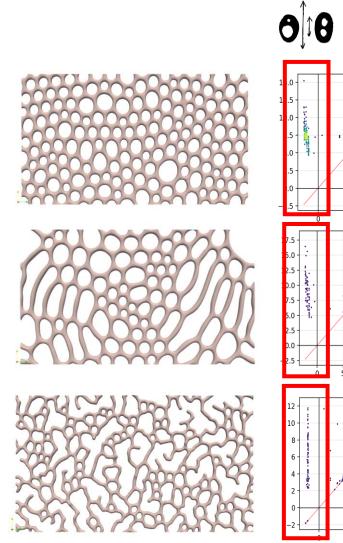


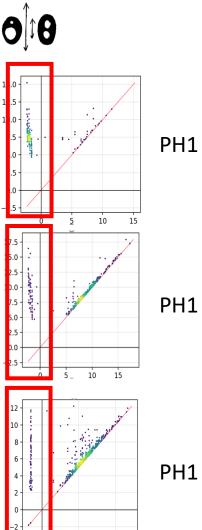
Take-home message

Persistent homology describes shapes by **pairing their critical points**.

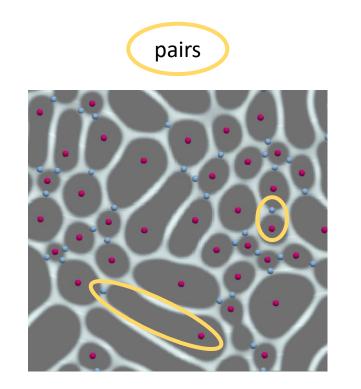
- one (b,d) point in the diagram = two critical points in the shape
- a critical point is either a creator / destroyer of a topological feature
- each critical point carries a value: a critical size
- no need to measure thicknesses and interspaces by hand! no annotation!
- long-lived features are more significant

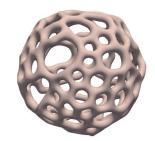
--> SDPH diagrams quantify the **texture of shapes**

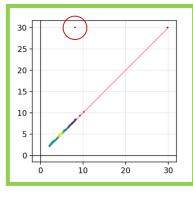




Examples







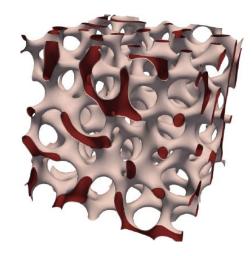
Creator-destroyer critical points (blue-red).

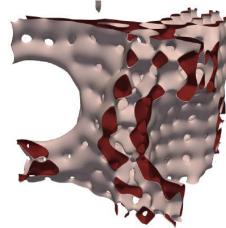
PH2 NE measures bubble interspaces.

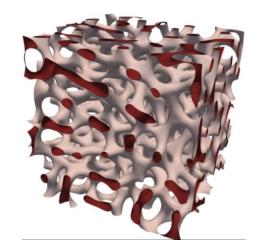
Increasing loop heterogeneity induces larger spread in PH1 NW.

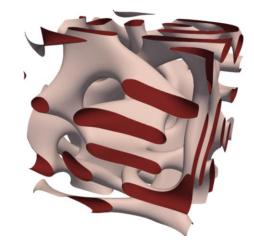
By pairing (creator –destroyer) critical points, SDPH quantifies the **texture of shapes**.

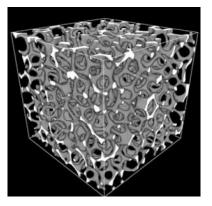
III. Data, imaging, applications

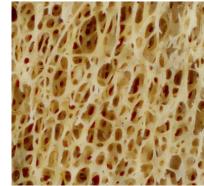


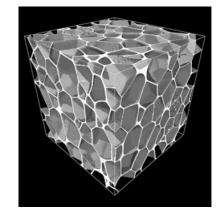


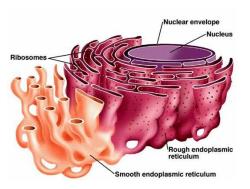












 μ CT image of open aluminium foam

lamina cribrosa behind the eye

trabecular bone

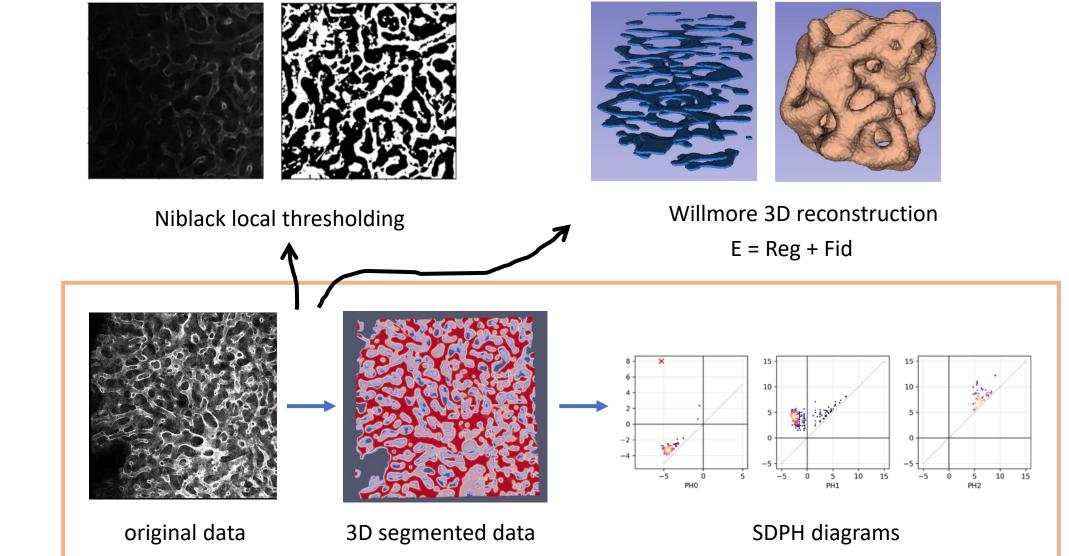
 μ CT image of closed polymer foam

endoplasmic reticulum

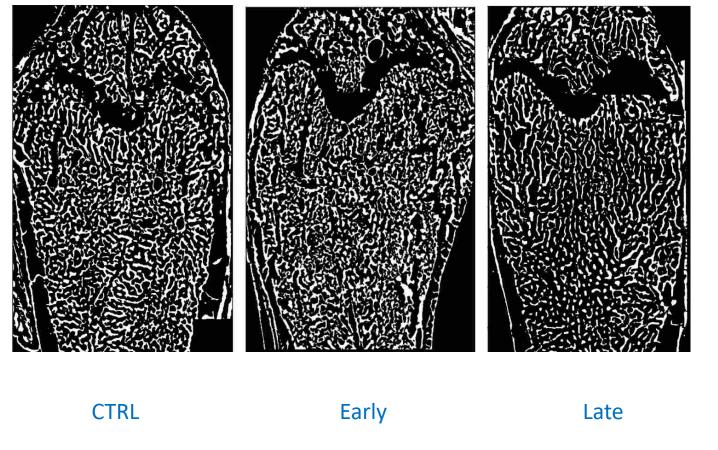
3D data (slices) 300 GB

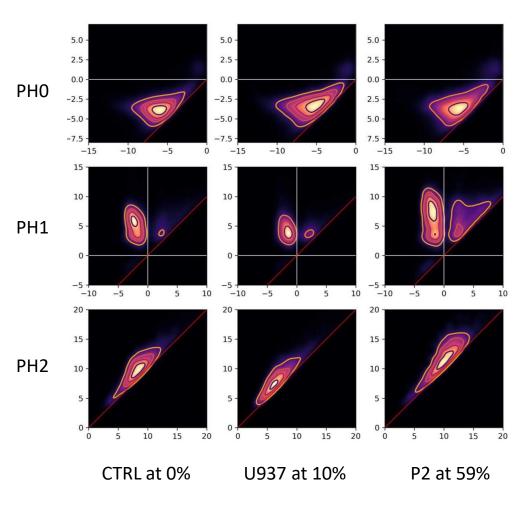
Niblack local thresholding original data

Application: leukaemia in bone marrow vessels



Vessels at three stages



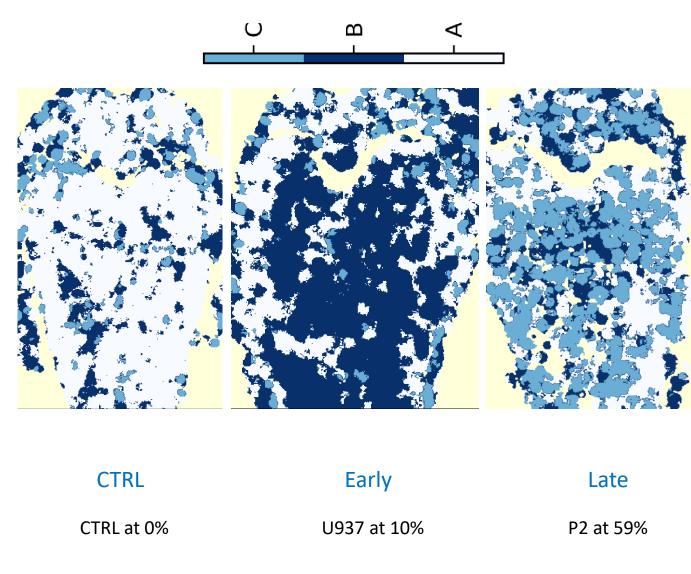


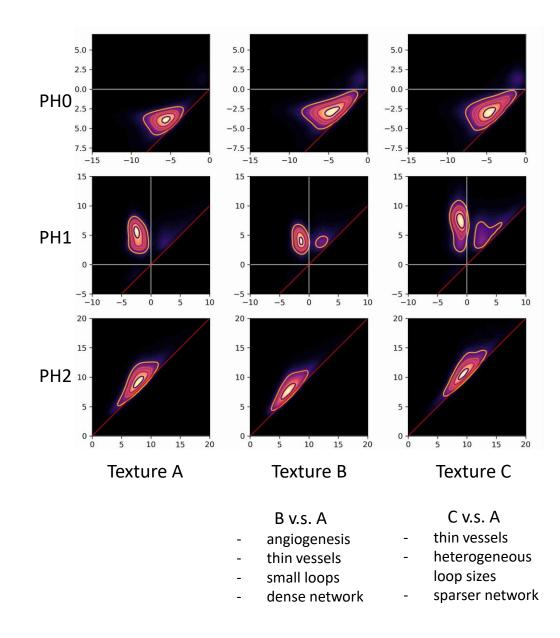
CTRL at 0%

U937 at 10%

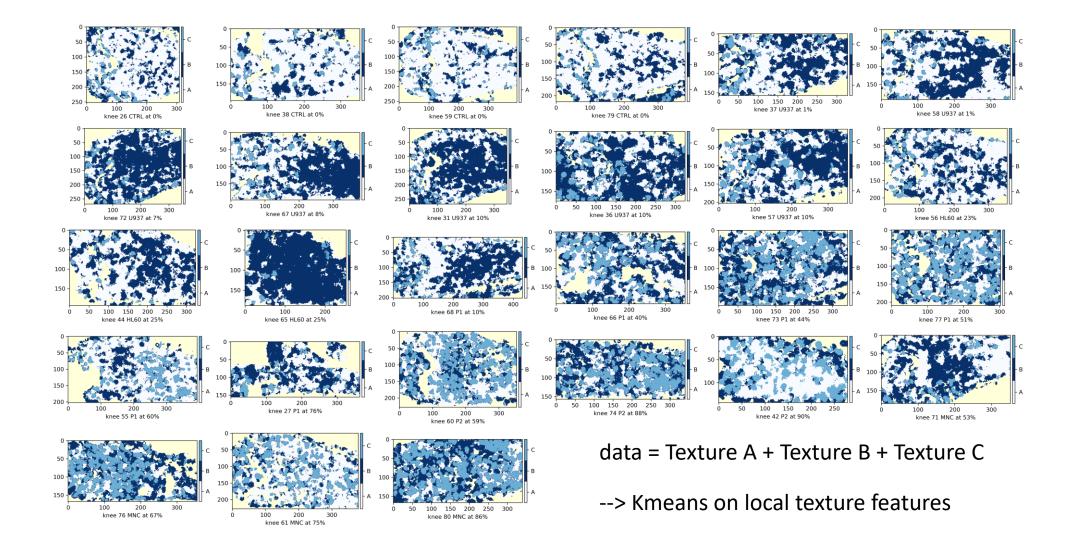
P2 at 59%

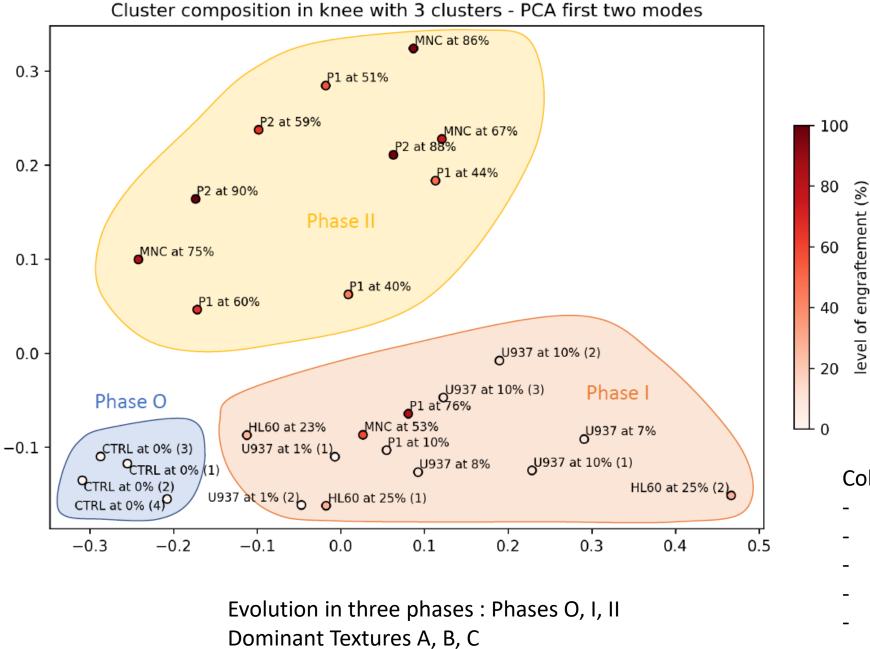
Spatial texture decomposition





Spatial texture decomposition

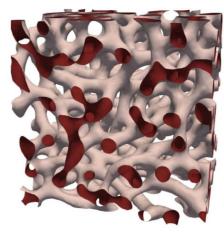


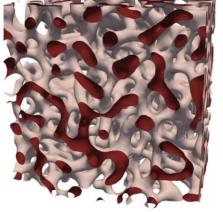


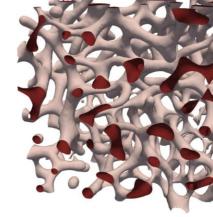
Cohort:

- 4 CTRL (0%)
- 4 MNC (53%-86%)
- 7 U937 (1%-10%)
- 3 HL60 (23%-25%)
- 6 P1 (10%-76%)
- 3 P2 (59%-90%)

Emulating real textures with curvatubes



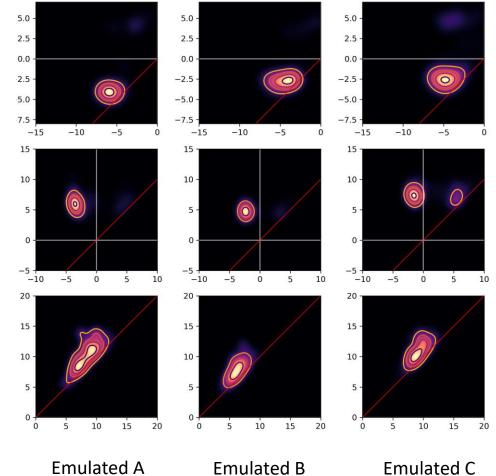




Emulated A

Emulated B

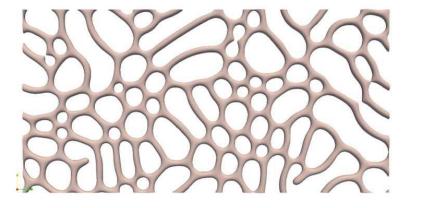
Emulated C



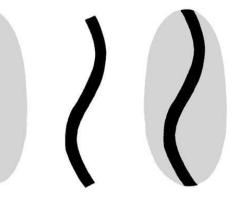
Bayesian Optimization w.r.t. SDPH diagrams

Non-linear impact of AML

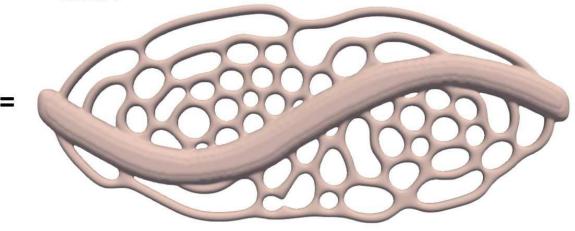
Other project: 3D bioprinting vessels



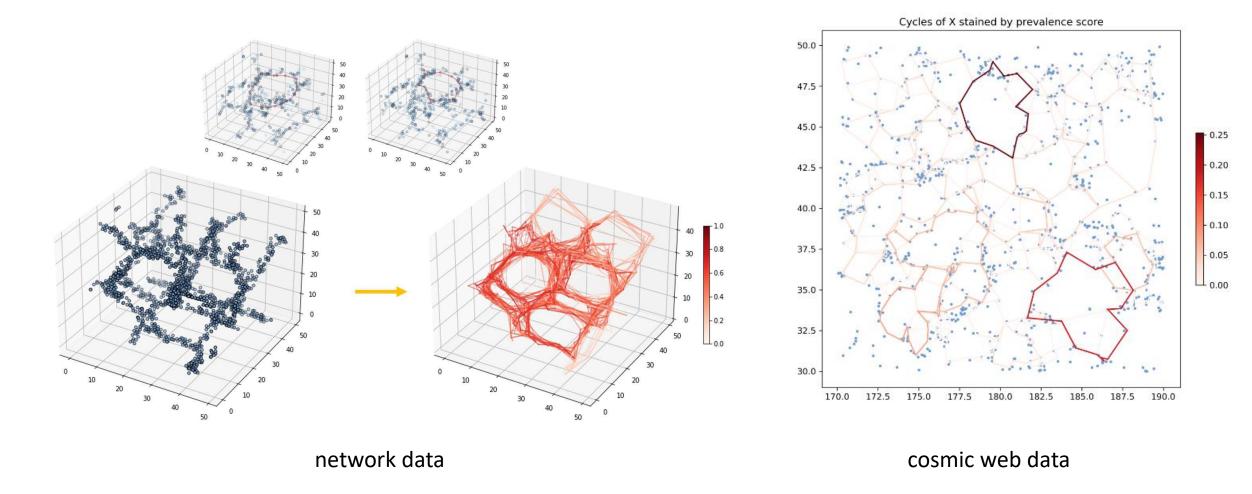
texture



structure



Other project: Finding "true cycles" in data



Fast Topological Signal Identification and Persistent Cohomological Cycle Matching, Ines Garcia-Redondo, Anthea Monod, Anna Song (arXiv 2022)

Conclusion:

Thank you!

Questions?