Modeling structural biology with geometric deep learning

Vincent Mallet - Ecole Polytechnique, CNRS - Maks Ovsjanikov
Fast molecular biology: zooming in!
Biomolecules structure and function

- Biomolecules are the building bricks of living systems and they interact
- **Structure** denotes the relative positions of the atoms of a molecule
- Physics (hence *function*) depend on relative positions

Example structure of MDM2 - p53 complex (PDB code 1ycr)
Target-centric drug discovery

- Diseases are induced by pathological function of biomolecules
- Drugs disrupt the pathological function of a target biomolecule
- Uses the target structure to simulate its interaction with potential binders

Example structure of MDM2 - Benzodiazepine complex (PDB 1t4e)
Structural data is available

- Structural data can be obtained from experimental and computational methods
 - X-Ray, Cryo-EM, NMR…
 - Gathered in a database

 … and in-silico approaches
 - Alphafold-{1,2,multimer}, ESMFold, OmegaFold…

Evolution of the number of available biomolecules structures (Source: RCSPDB)
Machine learning (quick)

- Algorithms for which performance increases with data

\[f : \mathbb{R} \rightarrow \mathbb{R} \]
\[x \rightarrow f(x) \sim f_\theta(x) = \theta_1 x + \theta_0 \]

- Let’s use machine learning to solve an example task : classify pictures of dog (1) vs cat (0), get a metric on a test set (accuracy for instance)
Representation

- Our object is a vector / list of numbers (pixels values)
- Perform linear regression

\[\mathcal{T}_1 \]

\((x_1, x_2, \ldots, x_n) \in \mathbb{R}^k\) → Linear regression → Metric : 0.84
Representation

- Turn object into a *(feature)* vector:
 - Weight, size, number of amino-acids...

- It's a bottleneck to **represent** complex objects as vectors

\[(x_1, x_2, \ldots, x_n) \in \mathbb{R}^k \]
Modeling of a biomolecule

- We can model our biomolecule with more than a vector:
 - Point cloud, graph, surface...
Modeling of a biomolecule

- Different models are relevant for proteins, RNA or DNA
- We only model our object, as a mathematical, numerical object
Learning beyond vectors

- If we represent our object as a graph, can we perform linear regression on it?
- Can we learn on objects with mathematical structure?
Learning on complex objects: The example of graphs

- The representation in a computer is arbitrary: we create structure
 - There is a permutation symmetry
Learning on complex objects: The example of graphs

- The representation in a computer is arbitrary: we create structure
 - There is a permutation symmetry

- Order is important for linear regression

\[f : \mathbb{R} \to \mathbb{R} \]
\[x \to f(x) \sim f_\theta(x) = \theta_3 x_3 + \theta_2 x_2 + \theta_1 x_1 + \theta_0 \]
Learning on complex objects: The example of graphs

- The representation in a computer is arbitrary: we create structure
 - There is a permutation symmetry

- The underlying data is structured:
 - There is a connectivity

Geometric deep learning aims to respect these mathematical properties when dealing with our data!
Learning beyond vectors

- Graph neural networks respect those properties and enable learning on graphs
 - They often yield better results!
Learning on biomolecules

- The dual choice of a representation and a learning method underpins a successful learning on biomolecules.

\[\tau_1 \]

Representation: \((x_1, x_2, \ldots x_n) \in \mathbb{R}^k\)

- Linear regression: Metric : 0.83
- Graph neural network: Metric : 0.87
RNA representation as 2.5D graphs

VeRNAI: A Tool for Mining Fuzzy Network Motifs in RNA. Oliver*, *Mallet* et al., Bioinformatics, 2022

RNAglib: A python package for RNA 2.5D graphs. *Mallet*, Oliver*, Broadbent* et al, Bioinformatics Application Notes, 2022
What is RNA?

- In between DNA and proteins as a messenger
- Single stranded unlike DNA:
 - allows for complex secondary structures
- Less hydrophobic than protein:
 - secondary structure is more prevalent than tertiary structure
RNA 2D graph

- Polymer of nucleotides
- Pairwise interactions form 2D graph
 - Bases are nodes
 - Interactions are edges (in addition to backbone)
RNA 3D

- This 2D structure conditions the 3D structure
- Some information is missing
2.5D RNA Graphs

- There are other possible interactions!
 - 12 without edge direction
 - 17 with edge direction
2.5D RNA Graphs

- New interactions => new graph
 - 12 edges types if undirected
 - 17 edges types if directed with a symmetry on certain edges

- These graphs are a finer grained depiction of the 3D
RNAmigos

- Drug discovery task: given a pocket, predict its ligand
- Data: all available RNA-ligand 3D data from the PDB (~800 data points)

Augmented base pairing networks encode RNA-small molecule binding preferences. Oliver, Mallet et al., NAR, 2020
2.5D graphs are relevant

- Using only 2D graphs is comparable to randomized baselines (p-value = 0.07)
- Using RNA 2.5D graphs performs significantly better than 2D graphs or the baselines (p-value = 10^{-11})
Drug design result

- We have better performance than this tool
- Really the beginning of RNA drug design
- A more in-depth study of the drug design aspect is under construction
Motifs: recurrent 3D substructures

- Motifs are recurrent 3D structural patterns
 - Roughly subgraphs with similar (or identical) structure that involve non-canonical interactions

- Motifs are functional subunits
 - Enriched at binding sites
 - Useful for structure prediction

The A-minor motif, in 3D and represented as a 2.5D graph
VeRNAI pipeline

VeRNAI: A Tool for Mining Fuzzy Network Motifs in RNA. Oliver*, Mallet* et al., Bioinformatics, 2022
VeRNAI discovers new motifs

- **VeRNAI** motifs are visually relevant and have low intra-GED
- **VeRNAI** motifs align with existing motifs

Distribution of GED values within (blue) and across (red) motifs

Four instances from three random **VeRNAI** motifs
Conclusion

2.5D graphs are an efficient representation for learning on RNA

● We successfully used them in drug discovery pipelines

● We successfully used them for motif mining

● We released a pip package (RNAGlib) to promote their use
Protein representation as surfaces and beyond
Surface is appealing

- Physics (hence function) depend on relative positions
- For interactions, there is a screening effect \((2^6 = 64)\)
- Going from 3d scaling to 2d scaling

Example structure of MDM2 - p53 complex (PDB code 1ycr)

Atomic potential as a function of distance. This is Leonard Jones with a decrease \(a D^6\)
Surface methods are booming

- Plotting, comparison functions are available
- Niche five years ago, now much better results

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWCNN [Ezuz et al. 2017]</td>
<td>90.3%</td>
</tr>
<tr>
<td>MeshCNN† [Hanocka et al. 2019]</td>
<td>91.0%</td>
</tr>
<tr>
<td>HSN† [Wiersma et al. 2020]</td>
<td>96.1%</td>
</tr>
<tr>
<td>MeshWalker† [Lahav and Tal 2020]</td>
<td>97.1%</td>
</tr>
<tr>
<td>PD-MeshNet† [Milano et al. 2020]</td>
<td>99.1%</td>
</tr>
<tr>
<td>HodgeNet† [Smirnov and Solomon 2021]</td>
<td>94.7%</td>
</tr>
<tr>
<td>FC† [Mitchel et al. 2021]</td>
<td>99.2%</td>
</tr>
<tr>
<td>DiffusionNet - xyz†</td>
<td>99.4%</td>
</tr>
<tr>
<td>DiffusionNet - xyz</td>
<td>99.0%</td>
</tr>
<tr>
<td>DiffusionNet - hks†</td>
<td>99.5%</td>
</tr>
<tr>
<td>DiffusionNet - hks</td>
<td>99.7%</td>
</tr>
</tbody>
</table>
Existing applied methods

- Pioneer work of MaSIF: using GCNN

- Very recent publication applies DiffusionNet to proteins with success
Work in progress

- Make a stronger assessment of the relevance of surface representation, with benchmarks
- Explore other ways to use the surface

Custom architectures are promising on the benchmark task of mutation stability prediction

ATOM3D: Tasks On Molecules in Three Dimensions, Townshend et al., Neurips, 2021
Cryo-EM and antibodies
Structure and Cryo-EM

- Cryo-EM is a way to get the structure (Nobel prize 2017)
Antibody detection in low resolution cryo-EM maps
Preliminary results and challenges

- Works well on some examples, ok in some others

- Challenging optimal transport loss (Keops ?)
Conclusion
Conclusion

Promising structural biology results using machine learning. This is made possible with coordinated development of:

1. Representations of the structure of biomolecules
2. Geometric learning methods that respect the representations properties

...this is still very underdeveloped
Better representations

- Integrative approach with several representations at the same time
- Pre-training schemes are promising

Protein Representation Learning By Geometric Structure Pretraining, Zhang et al., ICLR, 2023
Molecules flexibility and dynamics

- Biomolecules are dynamic objects
- Their properties depend on the whole conformational ensemble
- We should use this as a representation
Thanks for your attention!

Questions?
Existing motif mining tools

- Problem is NP hard: approximated by finding maximum common subgraphs (MCS) on all pairs of graphs\(^{(1)}\)
 - Very slow
 - Only exact matches
- MCS wastes a lot of time on useless pairs
- MCS misses flexibility, that is important biologically

\(^{(1)}\) Mining for recurrent long-range interactions in RNA structures reveals embedded hierarchies in network families, Reinharz et al. (2021)
Substructure fast comparison

- Approximate a structural comparison SIM with dot product of learnt structural embeddings

$SIM (\cdot, \cdot) \sim \langle \phi_1, \phi_2 \rangle$

- Here, SIM is a custom RNA Graph Edit Distance (GED)
Fuzzy clusters and limitation

- Quasi isomorphic subgraphs (fuzzy) are neighbors
- Only rooted subgraphs of fixed size
 => How to go beyond that?
Meta-graph

- Clusters are meta-nodes
- Connections in original graphs are meta-edges
- Close neighbors meta-nodes are frequently co-occurring adjacent subgraphs
Motif retrieval - Example

- Example motif = \{16,17\} in Graph 3
- It corresponds to a query with one meta-edge : DC
Motif retrieval - Example

1. Start with all nodes in the same clusters (partial hits)

\[\text{Hits}^{(0)} = \{ \{17\}, \{10\}, \{16\}, \{9\}, \{15\}, \{8\} \} \]
Motif retrieval - Example

1. Start with all nodes in the same clusters (partial hits)
2. Loop over the edges of this query and merge hits that are linked

$\text{Hits}^{(1)} = \{17, 16\}, \{10, 9\}, \{15\}, \{8\}$

$\text{Hits}^{(0)} = \{17\}, \{10\}, \{16\}, \{9\}, \{15\}, \{8\}$
VeRNAl retrieves motifs

- We inspect the hits list for a given query visually and by computing the GED
 - Best hits have low GED

- We compare to three RNA motif mining tools
 - We find most of them
 - We expand them with quasi-isomorphic instances

<table>
<thead>
<tr>
<th>Rank</th>
<th>1st</th>
<th>10th</th>
<th>100th</th>
<th>1000th</th>
<th>Decoy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean GED</td>
<td>3.1 ± 0.3</td>
<td>3.9 ± 0.4</td>
<td>6.2 ± 0.6</td>
<td>9.2 ± 0.8</td>
<td>14.4 ±0.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Covered</th>
<th>Missed</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGSU Petrov et al. [2013b]</td>
<td>112</td>
<td>14</td>
</tr>
<tr>
<td>RNA3DMotif Djelloul [2009]</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CaRNAval Reinharz et al. [2018a]</td>
<td>147</td>
<td>10</td>
</tr>
</tbody>
</table>